AFM - Raman - SNOM
Modular AFM
Automated AFM
Practical AFM
Model line
NTEGRA Spectra NTEGRA Spectra – AFM-Raman-SNOM system. NT-MDT – AFM-probes, atomic force microscope (AFM, HybriD Mode, STM, SPM, RAMAN, SNOM SPECTRUM SPECTRUM - Automated AFM-Raman-SNOM system for a wide range of applications

NTEGRA Spectra

Interdisciplinary research at the nanometer scale:
AFM + Confocal Raman + SNOM + TERS
NTEGRA Spectra – AFM-Raman-SNOM system. NT-MDT – AFM-probes, atomic force microscope (AFM, STM, SPM, RAMAN, SNOM
NTEGRA Spectra Brochure (8 Мб)

General information

Integration of SPM and confocal microscopy/Raman scattering spectroscopy. Owing to Tip Enhances Raman Scattering it allows carrying out spectroscopy/microscopy with up to 10 nm resolution.

Downloads & request info

Download the information brochures and other materials or fulfill a special form to request additional information.
Integration: The key to the new sciences
Change happens at interfaces and today’s most exciting changes in microscopy are happening where multiple technologies are interfaced together. NTEGRA Spectra is a prime example, uniting the full power of atomic force microscopy (AFM), confocal Raman and fluorescence microscopy and scanning near-field optical microscopy (SNOM) in one platform.
more info
Upright       Inverted      Side illumination   
  •  Atomic Force Microscopy ( > 30 modes )
  •  Confocal Raman / Fluorescence / Rayleigh Microscopy
  •  Scanning Near-Field Optical Microscopy ( SNOM / NSOM )
  •  Optimized for Tip Enhanced Raman and Fluorescence (TERS, TEFS, TERFS) and scattering SNOM (s-SNOM)

New era of integration

Optical AFM (NT-MDT) + Raman spectrometer (Renishaw) = Join the best technologies in one system 

Dr. Pavel Dorozhkin 
Request info
Information brochures
  1. NTEGRA Spectra Brochure   (8.27 Mb)
Technical information
  1. NT-MDT + Renishaw   (1.10 Mb)
  2. SNOM digest   (2.41 Mb)
  3. Graphene digest   (2.14 Mb)
  4. Tip-Enhanced Raman Scattering: Approaching 10 nm Optical Resolution   (719.08 Kb)
Key publications
  1. Nanoscale Chemical Imaging Using Top-Illumination Tip-Enhanced Raman Spectroscopy.J. Stadler, T. Schmid, and R. Zenobi, Nano Letters (2010) J. Stadler, T. Schmid, R. Zenobi, Nano Letters (2010)   (4.89 Mb)
  2. Finding a needle in a chemical haystack: tip-enhanced Raman scattering for studying carbon nanotubes mixtures. A. Chan & S. Kazarian, Nanotechnology 21 (2010) A. Chan, S. Kazarian, Nanotechnology 21 (2010)   (545.81 Kb)
  3. Nanoscale Chemical Imaging of Single-Layer Graphene J. Stadler, T. Schmid, R. Zenobi, American Chemical Society, 2011   (888.97 Kb)
  4. Imaging andstrain analysis of nano-scale SiGe structures by tip-enhanced Raman spectroscopy P. Hermann, M.Hecker, D. Chumakov, et al., Ultramicroscopy, 2011   (990.63 Kb)
  5. Carbon nanotubes degraded by neutrophil myeloperoxidase induce less pulmonary inflammation V.Kagan, N. Konduru, W. Feng, et al., Nature nanotechnology, 2010   (872.64 Kb)
  6. Laser-induced disassembly of a graphene single crystal into a nanocrystalline network B. Krauss, T. Lohmann, D.-H. Chae, et al., Physical review B 79, 165428, 2009   (1.43 Mb)
  7. Observation and control of blinking nitrogenvacancy centres in discrete nanodiamonds. Nature nanotechnology, 11 april, 2010 C. Bradac, T. Gaebel, N. Naidoo, Nature nanotechnology, 11 april, 2010   (757.81 Kb)
  8. "AFM + Raman Microscopy + SNOM + Tip-Enhanced Raman: Instrumentation and Applications P. Dorozhkin, E. Kuznetsov, A. Schokin, S. Timofeev, and V. Bykov, Microscopy Today (2010)   (1.01 Mb)
  9. Focus on Atomic force and shear force based tip-enhanced Raman spectroscopy and imaging S.Kharintsev, G. Hoffmann, P. Dorozhkin, G. With, J. Loos, Nanotechnology 18 (2007) 315502   (1.66 Mb)
  10. Tip-enhanced Raman Spectroscopy and Imaging S.Kharintsev, G. Hoffmann, J. Loos, G. With, P. Dorozhkin, Imaging & Microscopy v. 9 (2007) p. 56   (2.54 Mb)

HybriD Mode™

Ntegra Spectra equipped with new electronics and software allows to combine a recently developed innovative HybriD Mode™ (HD-AFM™ Mode) for nanomechanical proprieties and Raman for chemical imaging of exactly the same area within single measurement session.


Stiffness of HDPE/LDPE polymer sandwich cut by microtome


Overlap of Raman maps: HDPE (red), LDPE (blue)


AFM topography

Image size: 34 × 34 μm
Data from: M. Yanul, S. Magonov, P. Dorozhkin, NT-MDT.


Working principle

Modes: Controlled environment:
  • AFM (mechanical, electrical, magnetic properties, nanomanipulation etc.)
  • White Light Microscopy and Confocal Laser (Rayleigh) Imaging
  • Confocal Raman Imaging and Spectroscopy
  • Confocal Fluorescence Imaging and Spectroscopy
  • Scanning Near-Field Optical Microscopy (SNOM)
  • Tip Enhanced Raman and Fluorescence Microscopy (TERS, TEFS, TERFS)
  • Temperature
  • Humidity
  • Gases
  • Liquid
  • Electrochemical environment
  • External magnetic field
More info (flash animation) More info (flash animation)


More info

Graphene flakes
30x30 um

Ni foil
20x20 um

PC-PVAC film
30x30 um

30x30 um


Different configuration of AFM with confocal Raman/Fluorescence microscope



A unique configuration for simultaneous AFM - Raman - TERS* and SNOM imaging of opaque samples

*TERS: Tip Enhanced Raman Scattering, Tip Enhanced Fluorescence etc.


Optimized for simultaneous AFM - Raman - TERS* and SNOM imaging of samples on transparent substrates (living cells, nanoparticles etc.)

*TERS: Tip Enhanced Raman Scattering, Tip Enhanced Fluorescence etc.

Side illumination option

Used to facilitate TERS* measurements on opaque samples

*TERS: Tip Enhanced Raman Scattering, Tip Enhanced Fluorescence etc.

Fiber Scanning Near-field Optical Microscopy (SNOM)

SNOM techniques based on on quartz fiber.


Cantilever Scanning Near-field Optical Microscopy (SNOM)

SNOM techniques based on cantilevers with aperture.



Confocal Raman/Fluorescence microscopy
AFM/STM: Integration with spectroscopy
Scanning Near Field Optical Microscopy (SNOM)
Optimized for Tip Enhanced Raman Scattering (TERS) and other tip-related optical techniques
More info
Copyright © 1998 - 2014, NT-MDT